

Incorporating gendered landscapes into physically-based models via Participatory 3-D Mapping

Dr. Tracy Baker - Researcher, Hydrology & Hydrologic Modeling Dr. Liza Debevec - Social Scientist Ms. Yenenesh Abebe - GIS and Database Management International Water Management Institute - East Africa & Nile Basin

> **Dr. Beth Cullen** - Social Scientist International Livestock Research Institute - Ethiopia

Uniting agriculture and nature for poverty reduction

Four Categories of Ecosystem Services

Provisioning Services

Products obtained directly from ecosystems

•Food

- Fresh water
- •Fuel
- •Wood, Fiber, Medicine

Photo: Tracy Baker, IWMI

Regulating Services

Benefits obtained by regulating ecosystem processes

- Climate regulation
- Flood regulation
- Disease regulation
- Water purification

Photo: Matthew McCartney, IWMI

Cultural Services

Material and nonmaterial ecosystems benefits

- Aesthetic
- Spiritual
- Educational
- Recreational

Photo: Joseph King, TAMUS

Supporting Services

Services necessary for the production of all other ecosystem services:

Soil Formation

Nutrient Cycling

Primary production

Hydrologic model

How to reconcile the biophysical with the social?

<u>Traditional</u>

- Paper Surveys
- Participatory Rural Appraisal
- Focus Groups
- Working with community leaders one-on-one
- Policy-driven approach
- Science-driven

<u>Spatial</u>

- Location
- Size
- Direction
- Inter-object relationships
- Reveals things we don't or can't say
- Non-literate
- Ecosystem dynamics

Challenge

We need to incorporate human perception and value systems

- Local knowledge identifies most important resources
 - <u>Necessarily</u> points out ESs
 - Connected to livelihoods
- Takes many forms (2D, 3D, drawing, community measuring, GPS)

Caution

- Who participates and why?
- Maps contain private information
- Have potential to empower or marginalize

SWAT Landuse

- Rangelands
- Bush
- Forest*
- Pasture
- Barley-Teff-Potato
- Eucalyptus
- Barren*
- Low density residential

* Not in analyst land use map

Female LU N-S $R^2 = 0.74$ PBIAS = 19%

Male LU N-S R² = 0.87 PBIAS = 24%

Kolu Gelan Gendered P3D Mapping

Important Differences

	Female	Male
Surface Q (mm)	622	584
Shallow GW (mm)	389	353
ET (mm)	627	703
Sediment (T/ha)	10.3	8.5

- Males identified
 - 11 Springs
 - 6 Sacred Trees
 - 3 Sacred Sites
 - More grazing land
 - More fertile soils
- Females identified
 - 15 Springs
 - 3 Sacred Trees
 - 4 Sacred Sites
 - 2 Holy Water Sites
 - 4 Quarries
 - More degraded & less fertile soils

Use models to ...

- Evaluate multiple perceptions of landscapes and quantify impact on ecosystem services
- Assess how alternate future climates, land use, and attendant hydrologic response will impact ecosystem services as *valued by communities*

Explore:

- Focused Site(s) for evaluating models
- Identification of ESs at multiple scales
- Alternative climate and land use scenarios

Opportunities & Limitations

Examples driven by point location and watershed configuration options

- Flow at a spring or important water point (.rch)
- Impact of irrigation Consumptive water use (.wus)
 - Water distribution at key grazing areas
- Plant water stress in a given hru
- Changes in water sourcing (groundwater vs surface water)

Issue: How practical for land use planning and management?

What's Next?

- Continued support of 3D and 2D mapping at multiple scales in Ethiopia and Kenya
 - WLE, Rainfed, Humidtropics, WISE-UP
 - Multiple scale assessments
- CG-SWAT Community of Practice
 - October 2014
 - 15 SWAT experts from CG w/ Dr. Srinivasan (TAMUS)
 - Ecosystem Services Protocols

Thank You!

If you're not on the map then, you don't exist!

Improved natural resource management for livelihoods, food

http://wle.cgiar.org/blogs/ Search: *Hydrologist, Gender*

Contact: t.baker@cgiar.org

Hydrologist reality check: impact rests on social inclusion

NOVEMBER 25, 2013 BY TRACY BAKER

Featured, Gender, IWMI

INSTITUTIONS

RIVER BASINS

GENDER

I am a hydrologist. And I'm intrigued by the opportunities I see to incorporate gender into biophysical models.

To many of my hydrology colleagues it may sound like I should be standing up at a self-help meeting if I am going to make such proclamations. After all, we're concerned with the physical and quantifiable world. A world governed by physics, a world where variability and uncertainty are still somewhat quantifiable and predictable. Precipitation, streamflow, runoff, evapotranspiration, and groundwater. These are all measurable, and predictable, inputs and outputs of a system we call the water cycle. When we are asked about how we understand this system, it is quite simple: physics.

EVENTS

a

Subscribe to the Blog